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a b s t r a c t

In intertemporal choices, subjects face a trade-off between value and delay: achieving the most valu-
able outcome requires a longer time, whereas the immediately available option is objectively poorer.
Intertemporal choices are ubiquitous, and comparative studies reveal commonalities and differences
across species: all species devalue future rewards as a function of delay (delay aversion), yet there is a
lot of inter-specific variance in how rapidly such devaluation occurs. These differences are often inter-
preted in terms of ecological rationality, as depending on environmental factors (e.g., feeding ecology)
and the physiological and morphological constraints of different species (e.g., metabolic rate). Evolution-
ary hypotheses, however, are hard to verify in vivo, since it is difficult to observe precisely enough real
environments, not to mention ancestral ones. In this paper, we discuss the viability of an approach based
on evolutionary robotics: in Study 1, we evolve robots without a metabolism in five different ecologies; in
Study 2, we evolve metabolic robots (i.e., robots that consume energy over time) in three different ecolo-
gies. The intertemporal choices of the robots are analyzed both in their ecology and under laboratory
conditions. Results confirm the generality of delay aversion and the usefulness of studying intertemporal
choice through experimental evolutionary robotics.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Intertemporal choices concern options that can be obtained at
different points in time: buying a luxury item today or saving the
money to ensure a sizable pension in the future, enjoying a yummy
dessert or dieting to ensure a better health over time, waiting for
a fruit to ripen rather than eating it unripe. These choices often
oppose a smaller but sooner prize (e.g., a modest amount of food
ready at hand) against a larger but delayed outcome (e.g., a more
distant but also richer foraging opportunity). How subjects behave
in such circumstances is considered indicative of different degrees
of self-control (Ainslie, 2001; Frederick et al., 2002; Berns et al.,
2007), and the capacity to delay gratification in order to obtain a
better outcome has been found to correlate with a variety of adap-
tive skills or traits, such as planning for the future, being able to
interact socially, and enjoing physical health and well-being (Logue,
1988; Mischel et al., 1989; Tangney et al., 2004; Duckworth and
Seligman, 2005; Moffitt et al., 2011).
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After an initial emphasis on finding what mathematical model
(typically a delay discounting function) would better fit the empir-
ical data (Strotz, 1956; Ainslie, 1975; Laibson, 1997), current
research on intertemporal choice has identified new priorities:
most notably, the need to investigate the cognitive mechanisms
that produce the observed behavioral patterns, and to trace their
evolutionary roots (Berns et al., 2007). Comparative studies are
essential for that purpose, and indeed intertemporal choices have
been studied in insects (Cheng et al., 2002), birds (Logue and Peña-
Correal, 1985; Chelonis et al., 1994; Mazur, 2007), rodents (van
Haaren et al., 1988; Tobin et al., 1993; Green and Estle, 2003), non-
human primates (Tobin et al., 1996; Stevens et al., 2005a; Rosati
et al., 2007; Addessi et al., 2011; Stevens and Mühlhoff, 2012;
Paglieri et al., 2013a,b), and of course humans – both adults (Green
et al., 1994; Logue et al., 1996; Lawyer et al., 2010; Paglieri et al.,
2013a,b, 2015) and children (Mischel, 1974; Schwarz et al., 1983;
Thompson et al., 1997; Garon et al., 2012; Addessi et al., 2014).

Based on the available evidence, there is growing consensus
on the fact that inter-specific differences in intertemporal choice
behavior under laboratory conditions are tied to both environ-
mental factors, e.g., feeding ecology (Stevens et al., 2005a,b,b),
social dynamics (Amici et al., 2008), and tool use (Rosati et al.,
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2007), and to the physiological and morphological constraints of
different species, such as metabolic rate (Tobin and Logue, 1994).
All these hypotheses emphasize the role of ecological features
in determining the rationality of intertemporal choices observed
under laboratory conditions. It has been argued (Gigerenzer and
Goldstein, 1996) that ecological rationality is the most faithful and
promising present-day development of Herbert Simon’s intuitions
on bounded rationality. In particular, ecological rationality, as the
name implies, takes as central Simon’s idea that cognitive skills
should be understood and assessed in relation to the environment
in which they have evolved (see for instance Simon, 1956). This is
in line with a general effort at understanding decision-making in
the context of evolution (Hammerstein and Stevens, 2012; Fawcett
et al., 2014).

While evolutionary hypotheses on intertemporal choices are
fascinating, they are also extremely hard to verify. In partic-
ular, explanations in terms of ecological rationality (Stephens
and Anderson, 2001; Stevens and Stephens, 2010; Addessi et al.,
2011; Fawcett et al., 2012) rely on key assumptions about the
environment characteristic of a given species. Unfortunately, real
environments are typically hard to observe with the degree of
precision required to pinpoint the effects of a given ecological
variable (e.g., risk of predation) on the behavior under study (e.g.,
intertemporal choice). Moreover, ecological rationality assumes
that laboratory responses are indicative of behavioral patterns
adapted to cope efficiently with the ecology of a given species
(Todd and Gigerenzer, 2012). When applied to evolutionary expla-
nations, this makes reference to the ancestral environment where
that species evolved, which may or may not coincide with its cur-
rent ecology. Even though there are methods to acquire data on
ancestral environments (e.g., paleobiology may provide clues on
past feeding behavior, and primate archeology can shed light on
the kind of tools used ancestrally by non-human primates; Haslam
et al., 2009), they are bound to deliver incomplete information at
best, in spite of substantial research efforts.

This highlight the need to find also other methods for studying
the interaction between evolution, ecology and behavior – more
directly and with a greater degree of control on all the relevant
variables. In this paper, we discuss the viability of an approach
based on evolutionary robotics (Nolfi and Floreano, 2000; Floreano
et al., 2008; Doncieux et al., 2011; Bongard, 2013). The basic idea
is to evolve populations of simulated robots under specific ecolog-
ical pressures,1 and then observe their behavior under laboratory
conditions, with the aim of drawing interesting implications for
our understanding of natural organisms faced by similar tasks.
Let us label this methodology experimental evolutionary robotics,
to stress the fact that these robots are studied not only in the
ecology where they evolve, but also under artificial laboratory con-
ditions (for early examples of this method, see Da Rold et al., 2011;
Saglimbeni and Parisi, 2011; Paglieri et al., 2014; for a general dis-
cussion see Parisi, 2014).2

1 This process of evolution is achieved through evolutionary algorithms: simply
put, the idea is to apply to artificial organisms some key mechanisms of natural evo-
lution (e.g., fitness, selection, random mutation) to generate and identify effective
behavioral and/or morphological solutions to problems posed by a certain envi-
ronment. A comprehensive and authoritative introduction to this thriving field is
provided by Eiben and Smith (2007); further details on the specific evolutionary
algorithms used in our studies are discussed later on.

2 It is worth noting that all evolutionary robotics is, strictly speaking, experimen-
tal, in the sense that it manipulates certain variables (typically, features of the agent
and/or the environment where evolution takes place) in order to observe the result-
ing effects. However, here we use “experimental” to emphasize that robots are not
only observed in the environment where they evolved, but also in (an abstraction
of) a laboratory setting, where they perform the equivalent of controlled exper-
iments. This particular application of evolutionary robotics is still relatively rare,
yet extremely promising, especially for integrating the use of computer simulations

In this paper, we describe a series of studies where simple
robots evolve in an environment containing two different types
of food, and then they are required to make various intertemporal
choices between these two types of food under laboratory condi-
tions. Our results, albeit preliminary, demonstrate the viability of
this approach and how its results can be meaningfully compared
with naturalistic data. Moreover, both strengths and weaknesses of
experimental evolutionary robotics are highlighted in the process,
and they turn out to be complementary to those of behavioral stud-
ies in psychology, economics, and biology. This argues in favor of
an integrated approach to bounded rationality in both natural and
artificial organisms.

1.1. Why should we study choice behavior with evolutionary
robots?

Evolutionary robotics is now a well-developed approach to
the study of behavior (Nolfi and Floreano, 2000; Floreano et al.,
2008; Doncieux et al., 2011; Bongard, 2013), and it has been suc-
cessfully applied to a variety of biological phenomena, including,
among others, spatial navigation, morphological adaptation, coop-
eration, altruism, predation and evasion strategies (Floreano and
Keller, 2010; Waibel et al.„ 2011; Long, 2012; Parisi, 2014). Its
potential for social sciences, however, is still largely untapped:
evolutionary robotics has been applied to only a handful of rel-
evant psychological phenomena (e.g., risk aversion; Niv et al.,
2002; Arbilly et al., 2011; Paglieri et al., 2014), whereas complex,
human-specific social dynamics, such as institutions and norms,
are typically simulated using other computational techniques (e.g.,
agent-based modeling in computational sociology; Axelrod, 1997;
Macy and Willer, 2002; Squazzoni, 2012). This “division of com-
putational labor” tends to relegate evolutionary robotics to the
study of more “basic” biological phenomena: as we intend to show,
this limitation is unwarranted, and intertemporal choice behav-
ior constitutes an excellent case-study for testing the fruitfulness
of experimental evolutionary robotics to the study of complex psy-
chological dynamics. Nonetheless, the key merits and drawbacks of
this methodology are not specific of this domain of inquiry. Thus,
before describing our studies on intertemporal choice in robots, it
is useful to briefly summarize what makes this method worthy of
attention to start with, and what cautions need to be applied in
interpreting the resulting data.

- Advantages

• Full observability: Experimental evolutionary robotics allows
observing behavior both “in the wild”, i.e., in the ecological set-
ting where robots evolve, and “in the lab”, i.e., under specific test
conditions. In both cases, behavior can be studied in extreme
detail, since the simulation keeps track of all data – in fact, one of
the greatest challenges for the experimental roboticist is to avoid
being swamped by data.

• Full control: All variables can be easily and precisely manipulated,
regarding both ecology and test conditions. This extreme versa-
tility can lead to arbitrariness (see below), but it also ensures that
a relatively simple set-up can be adapted to a variety of different
real-life environments and/or laboratory protocols. Moreover,
it also allows performing “counterfactual experiments”, that is,
studying how ecological pressures for which no natural corre-
late is known might affect behavior – an exercise useful to test
the predictive value of models based on existing environments.

into behavioral sciences, where controlled experiments in laboratory settings are
the key method.
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Ecological shocks (e.g., sudden famine, colonization from other
populations, climate change) are also easy to replicate.

• Neurocomputational transparency: When applied to robots whose
behavior is controlled by an artificial brain (a neural network
of units linked together by unidirectional connections), this
methodology also allows to measure the dynamics of the control
system, to see what patterns of activation of the neural network’s
units correspond to different overt behaviors – similarly to what
is done by looking at the brain in natural organisms. This pro-
vides a further level of comparison between natural and artificial
cognition.

• Individual differences: Laboratory tests are typically performed on
robots that, through evolution, have adapted well to the needs of
their environment (although in principle nothing prevents from
testing in the lab also “dysfunctional” robots from earlier, less
well-adapted generations). While most individuals of the last
generation can efficiently cope with their ecology, they do so in
different ways and with different levels of proficiency: in other
words, substantial individual differences are observed in their
behavior, and the effect of such differences on their test perfor-
mance can be precisely assessed. This is potentially very fruitful,
in light of the analogous individual differences observed in virtu-
ally all species of animals.

• Non-deterministic responses: Behavior varies not only across
robots, but also when the same robot is faced more than once
by the same input, provided that a minimum amount of noise is
introduced in its control system. The fact that evolutionary robots
are typically non-deterministic, with respect to external stimuli,
is important for comparing them with natural organisms, who
also do not react always in the same way to identical inputs from
the environment. Typically, an animal repeating the same choice
across N sessions will not always opt for the same alternative, and
this is true also for evolutionary robots.

- Current limitations

• Abstraction: Both the ecology and the artificial laboratory are
much simpler than most natural counterparts, and the same is
true for the structure of the robot’s body and its control sys-
tem. While this high level of abstraction invites extreme caution
in making a straightforward comparison between the behavior
of evolutionary robots and that of natural organisms, their very
simplicity highlights how remarkable is their capacity to per-
form very well (that is, at a level comparable with that of much
more complex natural organisms) in many difficult tasks. Never-
theless, great care is needed to ensure that relevant features of
the behavior under study are not lost or distorted through this
necessary process of abstraction. As a case in point, in the stud-
ies presented here we opted to use spatial distance as a proxy
for temporal delay: this was done because the kind of simple
robots we used had no awareness of time, while they were fully
capable of perceiving space. To justify this choice, we made sure
that movement would have no additional cost for the agent,
aside from the time spent moving – either because the robot
did not consume energy at all (Study 1), or because energy con-
sumption depended solely on the passing of time, regardless of
whether the robot was moving or not (Study 2). Besides, this
choice is not completely arbitrary: many natural instances of
intertemporal choice in animals involve a spatial component (e.g.,
patch exploitation in blue jays and foraging decisions in baboons;
Stephens and Anderson, 2001; Noser and Byrne, 2007), and spa-
tial decision making has been experimentally studied in relation
to delay discounting in various species (e.g., guppies, marmosets,
and cotton-top tamarins; Stevens et al., 2005b; Mühlhoff et al.,
2011).

• Arbitrariness: In experimental evolutionary robotics, a variety
of parameters need to be set by the researcher concerning
type and number of food tokens in the robots’ environment,
presence/absence/number of competitors, the robots’ body and
control system, and the experimental test conditions. These
parameters are likely to have an impact on the resulting behavior,
and yet only a small sample of them can be directly manipulated
and tested within a study: thus, there is a significant danger of
arbitrariness in the results. The ideal solution to this problem is
to use data or hypotheses from behavioral studies to set as many
parameters as possible in ways that approximate some existing
ecology and actual test conditions, and to design artificial organ-
isms that simulate, in some relevant respect, the morphology and
physiology of natural organisms (for an example of this method,
see Caligiore et al., 2010). However, before undertaking the sub-
stantial efforts required by that strategy, it is advisable to check
what kind of results can be obtained using a less constrained evo-
lutionary robotic model: this is not only prudent, but also needed
to pinpoint the effect of each variable on the behavioral results
(see below).

• Starting small: Given the number of variables directly controlled
by the experimenter and the huge amount of data obtained,
experimental evolutionary robotics requires a scalar approach,
especially when this method is applied to a given phenomenon
for the first time – as it is the case here with intertemporal choice.
The only reliable way of disentangling the effects of different
variables on the results is by starting from the simplest possi-
ble scenario (even if this means making the evolutionary robots
less similar to natural organisms), and then add one element of
complexity at a time. As a case in point, in the studies presented
here we used robots that have no learning ability, no competi-
tors in their natural environment, and no need of a partner for
reproduction, since the genetic heritage of the best individuals
in a given generation is simply transferred (with mutations) to
individuals of the next generation. More generally, these robots
maximize their fitness according to a single parameter (amount
of food consumed in Study 1, life length in Study 2) and live in
an ecology where two different types of food are the only salient
objects. This minimal environment can then be enriched in vari-
ous ways, but it is very interesting to first see what kinds of choice
behavior emerge even under these simple circumstances.

• Simulated embodiment: The robots discussed in this paper are
simulated robots evolved in a simulated environment. Even
though the software used, Evorobot*, is based on the e-puck
robotic platform (Mondada et al., 2009), in this series of studies
we did not explore the role of real physical embodiment in robots’
behavior. Clearly, having a physical body is likely to change
many things, as studies on embodiment have repeatedly demon-
strated (Varela et al., 1992; Clark, 1997; Brooks, 1999; Pfeifer and
Bongard, 2006). However, running evolutionary studies on physi-
cal robotic platforms raises a host of technical and methodological
problems, many of which are bound to distract from the research
issues under consideration. Moreover, the physical structure of
the robots’ body and of their environment would affect behavior
in a variety of ways: the only hope to precisely trace all these
interrelated influences is by “adding embodiment” one step at
the time – which requires first gathering baseline results in the
absence of actual physical constraints. For all these reasons, using
a robotic simulator designed to replicate several key aspects of an
actual robot is currently the best option to start exploring choice
behavior in artificial organisms. In all cases, such method is based
on simulated embodiment, which is very different from lack of
embodiment – that is, using software agents that do not emu-
late any actual robotic platforms and live in virtual environments
with no resemblance to the laws of physics.
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• Residual key differences: As a result of the limitations discussed
above, the choice situation faced by, respectively, an evolutionary
robot and a natural organism is bound to differ in various respects.
One of the most important differences is that robots do not distin-
guish between the ecology and the lab. While humans, as well as
most species of animals, easily learn to identify a laboratory test
as a “special situation” with its own set of rules, the simple evo-
lutionary robots discussed here treat the stimuli presented them
in the artificial lab as if it was observed in their everyday ecol-
ogy. With respect to choice tasks, this implies that decisions will
be reversible until the very last moment (while moving toward
one food token, the robot remains free to change direction at any
time), and robots will not treat the options as being either unique
(there could be other food outside of the robot’s current field of
vision, and indeed a well-adapted robot will often turn about to
look for it, when presented with visible options that are very far),
or mutually exclusive (the fact that they approach one token first
does not imply that they have forsaken the other ones, insofar
as in their ecology food tokens do not disappear). In contrast,
many animals (and certainly humans) faced by an intertemporal
choice task typically understand that the observed options are
unique and mutually exclusive, and that their decision cannot
be reversed once it has been made. These differences invite cau-
tion in comparing our results with patterns observed in real labs.
However, the fact that evolutionary robots do not separate the
lab from the ecology is not necessarily an epistemological flaw:
in fact, one could argue that it is the real lab to be flawed, pre-
cisely because it puts experimental subjects in a situation that
they perceive as significantly different from “normal conditions”
(for a discussion of artificiality and so called external validity in
economical experiments, see Loewenstein, 1999; Starmer, 1999).

2. Study 1: robots without a metabolism

2.1. Basic experimental design

In this first study, we used robots without energetic constraints:
that is, robots that do not need to eat in order to survive, since
they do not consume energy over time. Nevertheless, their ability to
eat is what determines their fitness and thereby their likelihood of
leaving their genes to the next generation (see details below). Only
two types of food were present in their environment, distinguished
by color: green food (G) and blue food (B). The total number of food
tokens in the environment at any given time was constant because,
when a food token was eaten, another identical one appeared in a
random position within the environment, and both types of food
tokens were equally frequent and randomly distributed.

We evolved the robots under a variety of ecological conditions,3

manipulating the following variables: magnitude of the rewards
(i.e., energetic values assigned to G and B), and total number of food
tokens present in the environment. We simulated five different
ecologies, as follows:

Ecology 0: five G tokens of value 1 and five B tokens of value 1
(baseline condition).

Ecology 1: five G tokens of value 1 and five B tokens of value 2.
Ecology 2: five G tokens of value 5 and five B tokens of value 10.
Ecology 3: five G tokens of value 5 and five B tokens of value 6.
Ecology 4: ten G tokens of value 1 and ten B tokens of value 2.

3 We will keep referring to the environmental parameters affecting evolution as
“ecology”, for ease of reference: obviously, the label does not imply any approxi-
mation of the complexity of real ecologies – here each condition differs only for the
amount and/or value of the food items available.

Aside from these manipulations, all ecological conditions were
identical (see details below). For each ecology, we run two experi-
mental tests on the individuals from the last generation:

• Single option: a single token of either type is placed in front of
the robot, at various distances, and we measured how rapidly the
individual ends up consuming it.

• Binary choice, distancing the better option: first two food tokens
of different types are placed at the same distance (100 pixels)
from the robot, then the distance of the more valuable token (B)
is progressively increased and the choice is repeated.

2.2. Evolution: method and results

The robots live in a simulated environment of 1000 × 1000 pix-
els with randomly distributed food tokens which the robots have
to eat if they want to reproduce and leave their genes to the next
generation. Half of the food tokens are green and half are blue:
their energetic value change across different ecological conditions,
but in all cases (except in the baseline condition, Ecology 0) the blue
token is more energetic than the green one. Life has the same length
for all the robots (8000 cycles) but the robots differ in their ability
to eat the green and blue tokens and, therefore, in the total quan-
tity of energy that each individual robot is able to extract from the
environment. The robots’ behavior is under the control of a neu-
ral network, designed and evolved using the Evorobot* software
(http://laral.istc.cnr.it/evorobotstar/) to control an e-puck robotic
platform (http://www.e-puck.org/), a simple robot with a limited
perceptual field and wheel-based locomotion in two-dimensional
space (Fig. 1).

Since the robots of the first generation have random connec-
tion weights in their neural network, they are able to eat only
a few food tokens during their life. The robots which, by eating,
extract more energy from the environment reproduce by generat-
ing offspring that inherit the connection weights of their (single)
parent with the addition of random changes in some of the weights
(genetic mutations). The selective reproduction of the best robots
and the constant addition of genetic mutations lead to a progressive
increase in the number of food tokens eaten by the robots during
their life: Fig. 2 summarizes the amount of energy obtained by the
robots in a succession of 200 generations across all five ecological
conditions, for both the average and best robots of each generation
(here “best” means the 20% of individuals with the highest fitness).
The initial population consisted of 100 randomly generated geno-
types that encode the connection weights and the biases of 100
corresponding neural controllers (each parameter is encoded by 8
bits and normalized in the range [–5.0, +5.0]). The 20 best geno-
types of each generation were allowed to reproduce by generating
5 copies each, with 2% of their bits replaced with a new randomly
selected value.4 The evolutionary process lasted 200 generations,
and was replicated 10 times for each ecological conditions (seeds):
unless stated otherwise, all results reported concern the average
behavior of all robots from all seeds, except outliers.5 Outliers were
defined as individuals with a fitness level at the last generation that
differed from the mean of their seed by more than two standard
deviations – or, whenever this criterion generated negative values,
as individuals in the worst 10% percentile of the last generation.

4 Further details on the evolutionary algorithm and other simulation parameters
are freely available upon request, to allow a reproducibility check of current results.

5 We consider using 10 seeds reliable enough for the exploratory aims of the
present work: however, it is worth emphasizing that the number of seeds could
(and should, in future studies) be increased significantly (e.g., to 30 or 100) without
any special difficulty. A larger number of repetitions would provide even firmer
evidence of the generality of the results discussed here.

http://laral.istc.cnr.it/evorobotstar/
http://www.e-puck.org/
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Fig. 1. The e-puck platform: control system (A), physical body (B), virtual environment (C), perceptual field (D).

After their exclusion, the samples retained for analysis in each ecol-
ogy were Nec0 = 940, Nec1 = 849, Nec2 = 914, Nec3 = 935, Nec4 = 944.

These results show that robots rapidly evolve the ability to max-
imize food intake in this type of environment, and that their fitness
is sensitive to the overall amount of energy available in the envi-
ronment. The overall amount of energy (OAE) available at any given
time within an ecology is given by the number of tokens multiplied
by their value: so we have that OAE0 = 10, OAE1 = 15, OAE2 = 75,
OAE3 = 55, OAE4 = 30. As Fig. 2 shows, this measure correlates with
the mean fitness value after 200 generations in each ecology, both
for the average robots (Pearson: r = 0.9929, p < .001) and for the best
ones (Pearson: r = 0.9918, p < .001). This result is not surprising:
accumulating energy is easier in environments that are richer. Later
on we will discuss more interesting results, concerning how specific
forms of environmental richness (higher density of food tokens of
identical value vs. more valuable tokens with equal density) impact
on choice behavior in the lab.

When the two food types differ in their energetic value, robots
develop a preference for the richer food: Fig. 3 summarizes the per-
centage of food tokens of each type consumed by the robots of the
last generation of each ecology. Except when both food tokens have
the same value (Ecology 0), the robot develops a robust preference

for the blue token (comparison of percentages of choices for each
token across seeds; N = 10, p < .0001 in Ecology 1, 2 and 4, p < .001
in Ecology 3, NS in Ecology 0). Moreover, this preference is sensi-
tive to the ratio between the values of the two rewards, and not
to their absolute difference: in fact, the preference for the more
energetic token is stronger in Ecology 1 (G = 1, B = 2) than in Ecol-
ogy 3 (G = 5, B = 6), albeit the value difference between the tokens
remains the same (comparison of percent differences in preference
across seeds; N = 10, t(18) = 9.03, p < .0001); in contrast, strength of
preference does not change between Ecology 1 and Ecology 2 (G = 5,
B = 10), where ratio is the same, in spite of the fact that the value dif-
ference is five times larger (t(18) = 0.11, p = 0.9136). Interestingly,
also the density of food in the environment affects positively the
preference for the better food: choices for the blue token are sig-
nificantly more frequent in Ecology 4 than in Ecology 1 (N = 10,
t(18) = 5.23, p < .0001), even if in both cases the token values are
the same, and what changes is only the overall number of tokens.

2.3. Laboratory tests: method and results

The artificial laboratory was a quarter of the size of the evolu-
tion environment (500 × 500 pixels): only a limited number of food
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Fig. 2. Fitness curves for all ecology, measured as the mean amount of energy obtained for each generation over 200 generations: notice the different energy scale (0–500)
of the graphs for Ecologies 0, 1 and 4, in comparison with that used for Ecologies 2 and 3 (0–2000), to facilitate readability. Data refer to robots without a metabolism (Study
1).

tokens were introduced (one or two, depending on the test) and
the experimenter controlled both their placement and the initial
position of the robot. Every robot from the last generation in each
ecology performed 10 sessions of each test. The robot was consid-
ered to have “chosen” whatever token it reached (and thereby ate)
first: if after 400 cycles the robot had not yet reached any of the two
food tokens, the trial was considered as null. Robots that performed
null trials on all 10 sessions of an experiment (an extremely rare
occurrence) were excluded from data analysis for that test. Depend-
ing on the test, two main metrics were used to assess performance:
number of choices for each type of food tokens (%choice), and rapid-
ity with which the robot reached the food token (rapidity). This last
measure capture the intuition that the more valuable a token is, the
surer and faster will be one’s choice of it.

2.3.1. Single option
In this test, the robot is presented with a single food token, either

a G food or a B food, and its reactions are observed: in particular, we

recorded the time required to reach the food and divided it by its
initial distance, thus assessing the rapidity of the robot’s response.
The single token was always placed directly in front of the robot,
in the exact center of its perceptual field: its distance was varied
across test conditions (respectively, 70, 100, 200, 300 pixels from
the robot; for an example, see Fig. 4, panel A). We predicted that
rapidity would decrease as a function of distance: in other words, in
reaching a distant option, we expected the robot to waver and wan-
der more that when moving toward nearer objectives. As shown in
Fig. 5, this was indeed the pattern observed in our data: in all ecolo-
gies, individuals moved less promptly toward either food tokens,
when the distance from it was increased.

To investigate how distance and reward type interact in this
devaluation process, we performed a 4 × 2 ANOVA with repeated
measures on both factors (see Table 1 for a summary of results).
This confirmed that rapidity of approach decreases as a function of
distance, while reward type has no main impact on rapidity, except
for a weakly significant effect in Ecology 4. However, we observed

Fig. 3. Percentage of food tokens of each type consumed by robots of the last generation in their ecology. Data refer to robots without a metabolism (Study 1).
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Fig. 4. Types of laboratory tasks in Study 1: single option (A) and binary choice, distancing the better option (B).

Fig. 5. Rapidity of approach (measured in pixel/time step) to a single token of each type, placed in front of the robot at various distances (70, 100, 200, 300 px). Data refer to
robots without a metabolism (Study 1).

Table 1
ANOVA results for Distance (70/100/200/300 px) X Reward type (Green/Blue), both factors within-subjects, mean rapidity values for each seed, N = 10. Italics indicate statistical
significance, *p < .01, **p < .001, ***p < .0001. Data refer to robots without a metabolism (Study 1).

Distance Reward type Interaction

Ec0: g1, b1 ∗∗∗F(3,27) = 937.52, p < .0001 F(1,9) = 1.0463, p = 0.333 ∗ , F(3,27) = 4.553, p = 0.0105
Ec1: g1, b2 ∗∗∗F(3,27) = 1996.94, p < .0001 F(1,9) = 0.6417, p = 0.4437 ∗∗∗F(3,27) = 20.33, p < .0001
Ec2: g5, b10 ∗∗∗F(3,27) = 1859.49, p < .0001 F(1,9) = 0.9384, p = 0.358 ∗∗∗F(3,27) = 20, p < .0001
Ec3: g5, b6 ∗∗∗F(3,27) = 2389.06, p < .0001 F(1,9) = 0.919, p = 0.3628 ∗∗F(3,27) = 5.333, p = 0.0051
Ec4: g1, b2 (× 10) ∗∗∗F(3,27) = 249.51, p < .0001 ∗ , F(1,9) = 6.5779, p = 0.0304 ∗∗∗F(3,27) = 23.14, p < .0001
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Fig. 6. Choice patterns in a binary choice when the distance from the blue token progressively increases and the green token is always at 100 pixels from the individual:
mean number of tokens chosen by each individual out of 10 trials. Data refer to robots without a metabolism (Study 1).

a significant interaction between distance and reward type in all
ecologies, and most markedly in Ecology 1, 2, and 4: while rapid-
ity of approach is nearly identical across tokens on short distances,
on longer distances rapidity decreases more sharply for the less
valuable token (green), as opposed to the blue one (see Fig. 5). This
interaction is affected more by the ratio of, than by the difference
between, token values, as a comparison between Ecology 1, 2 and 3
immediately show. Moreover, also the density of food in the envi-
ronment seems to affect this interaction, which is most pronounced
in Ecology 4.

2.3.2. Binary choice, distancing the better option
In this test, the robot is first presented with two options, one

green token vs. one blue token, both placed at the same distance
(100 pixels), on two sides of its visual field, and with an inter-token
distance of 100 pixels. Then the distance of the blue token from
the robot is progressively increased (150, 200, 250, 300 pixels),
while the green token remains at 100 pixels from the robot (for
an example, see Fig. 4, panel B). Fig. 6 summarizes the choice pat-
terns of the robots in this test: in general, distancing the blue token
progressively reduces its appeal, until the individual becomes indif-
ferent between the two options (indifference point) or develops a
preference for the green token, even though it delivers less energy.

These data show how the indifference point between the two
options shifts across ecologies. In Ecology 0, where both tokens
have the same value, individuals are indifferent between equidis-
tant options, and they start preferring the green option as soon as
the blue one is moved further away – not surprisingly. In contrast,
in Ecology 1 and 2 the mean indifference point is approximately
270 px, which means that individuals on average are indifferent
between a token of value X (1 or 5) distant 100 px and a token of
value 2X (2 or 10) distant 270 px; whereas in Ecology 3 the indif-
ference point is significantly closer, around 160 px. Taken together,
these findings show that indifference between two options of dif-
ferent value depends on the ratio of the values, rather than on their
difference. Interestingly, in Ecology 4 we observe a marked effect

of food density on choice behavior: in an environment where food
tokens are more numerous, individuals are much more inclined to
persist in pursuing a larger token, even when it is much further
than a smaller one.

2.4. Discussion and comparison with natural organisms

This first study was mostly intended to test the general feasibil-
ity of our methodology. Given the extremely unnatural properties
of these individuals (e.g., lack of a metabolism), we did not expect to
replicate natural data to any meaningful extent. However, we did
predict that robots would in the binary choice task (Fig. 6) reveal a
clear process of reward devaluation as a function of distance. The
more distant the reward is, the less keen is the robot to reach it
or to choose it over a less energetic prize. Current data do not yet
permit to assess what mathematical model (exponential, hyper-
bolic, quasi-hyperbolic, sub-additive, etc.) best describes this form
of spatial (hence temporal) discounting, since rapidity data can-
not account for differences in the absolute value of rewards (the
maximum rapidity depends on the robot specification, not on the
features of the reward), whereas for binary choice more indiffer-
ence points would be needed, to try plotting a discounting function.
However, it is easy to see how these additional data could be gath-
ered, and doing so will be part of our future work.

On the other hand, analyzing laboratory behavior via discount-
ing functions might not be the most profitable approach, with
respect to experimental evolutionary robotics. Perhaps the most
notable added value of this methodology is to deliver rich data on
evolutionary patterns, which can thus be put into contact with lab-
oratory evidence. In this respect, there are two main findings worth
emphasizing in this first study: the emergence of discounting pro-
cesses even in the absence of metabolism, and the role of reward
values and numerosity in determining behavior.

Regarding the first point, it is important to emphasize once again
that the robots in this study do not have a metabolism: that is,
they do not need energy to function, cannot die of hunger, or even
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experience it, and do not consume any energy while moving in the
environment. Thus, tokens are relevant for them only as a means to
maximize the chances of reproducing their genes in the next gen-
eration. As a consequence, many of the normal reasons for being
averse to distance (or delay) do not apply to them: no extra con-
sumption of energy is required to reach a distant reward, nor there
is any life-threatening urgency of getting to the food before it is too
late. In fact, the only costs positively associated with distance here
are opportunity costs: given their limited life-span (8000 cycles),
natural selection favors those robots who learn how to “make the
most of it” – that is, robots that do not forsake valuable alterna-
tives, just because they are fixated on reaching a distant objective.
The fact that discounting emerges under such conditions prove that
opportunity costs are sufficient to produce an evolutionary pres-
sure toward it. Of course, this does not imply that discounting in
natural organisms is the product of opportunity costs alone. But
it does vouch for the possibility that opportunity costs might be
a crucial factor in the evolution of temporal discounting – a sug-
gestion already made by a variety of studies, and also backed by
some empirical evidence (Stephens and Anderson, 2001; Stevens
and Stephens, 2010; Paglieri, 2013).

As for the effects of reward values and numerosity on behavior,
both under ecological conditions and in laboratory tasks, several
interesting patterns are apparent in the data. First, changing reward
magnitude while keeping their ratio constant does not produce any
change in behavior: indeed, data from Ecology 1 (G = 1 vs. B = 2) and
Ecology 2 (G = 5 vs. B = 10) are virtually indistinguishable. This might
seem in contrast with the magnitude effect observed in intertem-
poral choices in humans (Kirby, 1997; Green et al., 1997, 1999),
but it is not, because here we are comparing different magnitudes
across ecologies, rather than within them, and the absence of a
metabolism makes absolute magnitude adaptively indifferent: a
blue-eating robot gains twice more energy than a green-eating
robot both in Ecology 1 and in Ecology 2, and that is all that mat-
ters for reproductive success, in the absence of a metabolism. More
precisely, the ratio between reward values matters more than their
absolute difference, in terms of behavioral effects: this is why, in
all relevant measures (see Figs. 3, 5, and 6), robots from Ecology 1
(G = 1 vs. B = 2) show sharper discrimination between reward types
than robots from Ecology 3 (G = 5 vs. B = 6), even though the value
difference in both ecologies is exactly the same. Finally, also the
numerosity of food tokens has a significant impact on behavior,
even when their values are kept constant across ecologies. Here
the relevant contrast is between Ecology 1 and 4, in which blue and
green tokens have the same values (B = 2 and G = 1), but are more
numerous in the Ecology 4 (10 blue and 10 green) than in Ecol-
ogy 1 (5 blue and 5 green). This results in sharper discrimination
between reward types in all relevant measures: in particular, robots
from Ecology 4 show a stronger ecological preference for blue food
than robots in Ecology 1 (Fig. 3), which is further reflected by their
greater tolerance for distance in the binary choice task (Fig. 6). This
effect is probably due to the fact that, in an ecology more densely
packed with food, the advantages of even a slight tendency to favor
the better food are likely to pay off, thus increasing the rate at which
that adaptive trait is selected. This seems confirmed by the fact
that the fitness curve is steeper for Ecology 4 than for Ecology 1,
especially in the first 50 generations or so (Fig. 2).

3. Study 2: hungry robots

3.1. Basic experimental design

In this second study, we introduced a simplified metabolism in
the robots. We used robots that consume energy as a function of
time (0.021 energy units consumed per time step) and die when

Fig. 7. Control system for hungry robots: the neural network encodes also the cur-
rent energy level.

their energy level reaches zero, so that they need food to acquire
the energy necessary for their survival. Crucially, their energy level
also has an upper boundary (set to 1), beyond which further food
consumption no longer increases the robot’s energy: this captures
the fact that biological organisms cannot eat indefinitely. More-
over, the robots’ brain is informed of the current energy level in the
robots’ body, to simulate the sensation of hunger of real animals.
All other parameters of the robots were kept identical to Study 1,
in order to assess how having a metabolism would impact on the
behavioral patterns observed in the previous experiments.

We evolved these robots under three ecological conditions,
manipulating again the magnitude of the rewards (i.e., energetic
values assigned to G and B). With respect to Study 1, we had to use
different numerical values, due to the introduction of a bounded
energy level (from 0 to 1) for each individual. Concerning reward
magnitude, we simulated three different ecology, as follows:

Ecology 5: five G tokens of value 0.1 and five B tokens of value
0.1 (OAE5 = 1.0).

Ecology 6: five G tokens of value 0.1 and five B tokens of value
0.2 (OAE6 = 1.5).

Ecology 7: five G tokens of value 0.3 and five B tokens of value
0.6 (OAE7 = 4.5).

Aside from these manipulations, all ecological conditions were
identical, and for each of them we run the same laboratory tests
used in Study 1 on the individuals from the last generation. How-
ever, in addition we also manipulated the level of hunger of the
individual, to see if and how this variable would affect behavior
(see details below).

3.2. Evolution: method and results

The robotic platform, the virtual environment, and the evolu-
tionary algorithm were exactly the same as in Study 1, except
that now the neural network controlling the robot’s behavior also
included a sensory unit encoding the current energy level (see
Fig. 7) and that fitness was measured as the length of a robot’s
life rather than as the quantity of food eaten by the robot (albeit,
for obvious reasons, the two measures are strongly correlated).6

This implies that, for the robots with a metabolism, it is not only
important how much they eat but also when they eat: eating a food

6 Notice that population size was kept constant (100 individuals) across gener-
ations: this is standard practice in evolutionary robotics, mostly to facilitate the
evolutionary process and avoid risks of mass extinction during the first generations,
when behavioral strategies are not yet well adapted to environmental constraints.
However, this is also a significant abstraction with respect to natural selection,
where extinction is a very concrete (and necessary) occurrence.
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Fig. 8. Fitness curves for all ecologies, measured as the mean life length (max. 8000 cycles) for each generation over 200 generations. Data refer to robots with a metabolism
(Study 2).

token when one is already satiated does not improve one’s chances
of survival, whereas eating the same food token is crucial when one
is close to starvation.

In the face of these more complex evolutionary pressures, the
robots adaptive success is tied even more closely to the amount
of food present in the environment, as Fig. 8 shows (data refers to
mean life length for each generation). Applying the exclusion cri-
teria for outliers used in Study 1, the samples retained for analysis
in each ecology were Nec5 = 882, Nec6 = 845, Nec7 = 819.

In the baseline condition (Ecology 5), where at any given time
the food present in the environment is barely sufficient to sustain
the robots (OAE6 = 1.0), the fitness curve grows very slowly across
generations, for both the average and best individuals. However,
an increase of 50% in OAE (Ecology 6) dramatically improves adap-
tive success, and evolving optimal responses becomes fairly trivial
when the OAE is especially abundant (Ecology 7).

In fact, it is important to assess how much easier it is to reach
evolutionary success in richer environments, and how this might
impact on the quality of the behavioral strategies evolved in these
environments. We used data on life length and intake rates to
gather some insights in that direction, as summarized in Fig. 9.
Looking at mean values for each seed (N = 30), richer ecologies
result in a longer life-span (F(2, 27) = 167.72, p < .0001, all pairwise
comparisons p < .01, except Ec5 vs. Ec6 p < .05) and in a superior
energy-based intake rate, that is, the amount of energy obtained
per time unit (F(2, 27) = 31.28, p < .0001, all pairwise comparisons
p < .01). But if we look at the token-based intake rate, that is, the
number of food tokens eaten per time unit, we find that robots from
the richer ecology (Ecology 7) are less effective in finding food than
robots from poorer ecologies (F(2, 27) = 29.41, p < .0001, all pair-
wise comparisons p < .01). This shows that their longer life-span

and higher energetic gains are very much due to the better quality
of their ecology, rather than to superior behavioral strategies.

In looking at how much energy robots of the last generation
are able to consume during their life, it is worth observing them
when the energy level is kept fixed (at 1.0, 0.5, or 0.1), as opposed
to the standard condition in which they evolved, where energy
decreases as a function of time and increases whenever food is
consumed. This manipulation is roughly equivalent to performing a
field experiment (one that would be impossible to realize in natural
organisms), as opposed to the controlled experiments performed
in the lab. It provides valuable information on specific behavioral
strategies evolved to cope with different levels of energy, which
correspond to different levels of need for food: extreme when the
energy level is low, negligible or null when the energy level is high
or maximal.

As Fig. 10 shows, the amount of food robots are able to consume
positively correlates with the abundance of food in their ecology,
which of course is no surprise; nor it is surprising that, by keeping
fixed their energy level, robots are able to consume more food, since
they are de facto immortal. But what is interesting is the interaction
between these two effects: robots that have no need for food (fixed
energy level at 1.0) are less inclined to eat than robots with lower
energy level in all ecologies, and most clearly in Ecology 7, where
food tokens have greater value. In that ecology, satiated robots do
not just express a mild lack of interest for food, as it happens in
other ecologies, but actually practice a deliberate avoidance strat-
egy: whenever they see food, they tend to avoid consuming it –
witness the fact that 21% of robots in that ecology managed to con-
sume zero tokens of food over 8000 cycles. Notice that this cannot
be interpreted as inefficient behavior, since the same robots are
very good at consuming food whenever their energy level is lower

Fig. 9. Mean life length (left panel), energy intake rate (center panel), and token intake rate (right panel) in robots with a metabolism (Study 2), measured at the last generation
with free energy levels.
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Fig. 10. Overall energy consumed in the last generation for each ecology, either allowing the energy level to vary as usual (En = Free) or keeping it fixed (to 1.0, 0.5, or 0.1).
Data refer to robots with a metabolism (Study 2).

than 1. A mixed 3 × 4 ANOVA performed on mean amount of energy
consumed at last generation for each seed (N = 30), with Ecology
varying between-subjects and energy level (free/1.0/0.5/0.1) as
within-subjects variable, confirmed the statistical significance of
both main effects and their interaction (p < .0001 in all cases).

In terms of choices between different food types, robots with a
metabolism develop the same preference for the richer food already
observed in the absence of energetic consumption (see Fig. 11):
whereas robots in Ecology 5 (G = 0.1, B = 0.1) are substantially indif-
ferent between tokens, a clear preference for the better food is
developed when blue tokens are worth twice as much as the green
ones (Ecologies 6 and 7). A between-subjects ANOVA over the mean
percentage of blue tokens consumed at the last generation across
seeds (N = 30) confirms the significance of the effect: F(2, 18) = 5.48,
p = .01. Pairwise comparisons (Tukey HSD test) shows that, while
the preference for blue tokens is significantly higher in Ecologies 6
and 7 than in Ecology 5 (p < .05), there is no significant difference
in preference between Ecologies 6 and 7. This is also consistent
with what was observed in robots without a metabolism (Study 1),
and suggests that what determines preference between food types
is the ratio of their values, not their difference – even in robots
with a metabolism. Finally, no substantial interaction between food
preference and energy level was observed (robots maintain stable
preferences across all energy levels), except in Ecology 7: here a
within-subjects ANOVA (N = 10) shows a weakly significant effect
of energy level on food preference (F(3, 27) = 3.83, p < .05), with the
preference for the better food being lower for satiated robots, as
opposed to both robots with free energy levels and robots with
fixed energy at 0.5 (p < .05 in both cases). This suggests that, when

food tokens are especially large, satiated robots not only try to avoid
eating them, but also weaken their preference for the larger ones.

3.3. Laboratory tests: method and results

The laboratory tasks were the same as in Study 1 (single option,
and binary choice varying the distance of the blue reward), but for
each task robots were tested either with a free energy level (set to
1 at the beginning of testing, then let free to decrease as usual), or
with their energy level kept constant during testing at one of three
values: 1, 0.5, or 0.1. We predicted that this manipulation would
reveal energy-dependent behavioral strategies, determined by the
ecology in which robots were evolved.

3.3.1. Single option
Using rapidity of approach as a measure of the value robots

assign to rewards, we observed in all ecologies the same pattern
of devaluation noted in Study 1 (see Fig. 12, data with free energy
levels). However, while in Ecologies 5 and 6 this effect was virtu-
ally identical to the one observed in robots without metabolism,
in Ecology 7 the presence of a metabolism determined the emer-
gence of a novel pattern, showing that metabolic robots evolved
in a rich environment move much more slowly toward food than
robots evolved in less wealthy ecologies.

To better appreciate the significance of these findings, we per-
formed a 4 × 2 ANOVA with repeated measures on both factors
(see Table 2 for a summary of results). This confirmed that rapid-
ity of approach decreases as a function of distance, while reward
type has no impact on rapidity only when both options are equally

Fig. 11. Percentage of food tokens of each type consumed by robots of the last generation in their ecology, with free energy levels. The comparison shows similar patterns
both for robots without a metabolism (Ecologies 0–2, Study 1) and for robots with a metabolism (Ecologies 5–7, Study 2).
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Fig. 12. Rapidity of approach (measured in pixel/time step) to a single token of each type, placed in front of the robot at 70, 100, 200, or 300 px. Data refer to robots with a
metabolism (Study 2), tested with free energy levels.

valuable (Ecology 5). But when the value of the rewards is different,
its effect on rapidity depends on the evolutionary environment:
robots evolved in a poorer environment (Ecology 6) move faster
toward larger rewards, when these are placed far away; on the
contrary, robots evolved in a richer environment (Ecology 7) move
faster toward smaller rewards, when these are placed near them.

The behavior exhibited by the robots of Ecology 7 may seem
puzzling, but it has a natural explanation. As we discussed in the
previous section, robots from a rich ecology do not exhibit a very
high intake rate in terms of number of tokens eaten, because they do
not need to: they live long, successful lives without having to look
for food all the time, thanks to the relative abundance of resources
provided in their environment. This might well result in a ten-
dency to move more slowly toward food: there is literally no need
to run, if resources are plentiful. However, it is an open question
whether this ecological abundance dulls the selection process and
thus produces less sharp adaptions, or if evolution results anyway
in very good strategies, which simply do not need to be employed
constantly. The evidence seems to point toward the latter inter-
pretation: since robots start testing at full energy, when rewards as
large as those present in Ecology 7 (B = 0.6 and G = 0.3) are close to
them, consuming such rewards would be nearly useless, because
most of their energetic value would be lost (i.e., it would exceed the
maximum capacity of the robot’s energy level). So these data could
be taken to suggest that well adapted robots refrain from consum-
ing food until its energetic value is fully needed: since in Ecology 7
the larger reward is fully needed only with an energy level of 0.4
or lower, whereas the green reward is fully needed already at an
energy level of 0.7 or less, robots will take more time to reach the
larger reward than the smaller ones, especially when they are close
to their current location.

This interpretation is confirmed by looking at how the devalua-
tion process is affected by keeping fixed the energy level in Ecology
7 – and only there, because no effect of energy level is observed
on the single option performance in Ecologies 5 and 6. In contrast,
robots from the richest ecology have very different performances
depending on whether their energy level is kept fixed at 1, 0.5, or

0.1; as Fig. 13 shows, their rapidity on all distances is inversely
proportional to their energy level, and the faster reaction times to
the lesser reward also tend to disappear as the energy level drops;
moreover, whereas robots at full energy make a lot of null trials
in the single option task, and more so for the better reward, null
trials are very rare and evenly distributed between rewards with
lower energy levels (factorial ANOVA on mean % of null trials for
all seeds, Energy levels X Reward type: effect of energy level, F(2,
18) = 62.15, p < .0001, no significant effect of reward type, signifi-
cant interaction, F(2, 18) = 8.93, p < .01). All of this suggests that in
Ecology 7 motivation to move quickly toward a reward, and espe-
cially a large one, is low only when there is in fact no need to do so,
because the robot is already satiated and would not benefit from
eating more (highly energetic) food.

3.3.2. Binary choice, distancing the better option
In this test, as it was done in Study 1, the robot was first pre-

sented with two options, one green token vs. one blue token, both
placed at the same distance (100 pixels), on two sides of its visual
field, and with an inter-token distance of 100 pixels. Again we
observed a preference shift from the larger reward to the smaller
one, when the distance to the former was increased – except in Ecol-
ogy 5, where both rewards have the same value. However, while
in robots without metabolism the magnitude of the rewards did
not affect at all this process (see Fig. 6, in particular the panels for
Ecology 1 and 2), this factor has a very significant effect in robots
with metabolic constraints (see Fig. 14, in particular the panels for
Ecology 6 and 7).

Keeping the ratio between rewards constant, we observe that
robots evolved in a more energetic environment (Ecology 7)
become indifferent between the two rewards sooner than robots
adapted to less energetic food tokens (Ecology 6). Whereas a blue
token loses half of its value after approximately 170 px in Ecology
7, it takes about 280 px of distance to replicate the same devalua-
tion effect in Ecology 6. Translated in discounting terms, this means
that the discounting rate of the larger reward is much higher in rich
ecologies than in poor ones. This might seem counter-intuitive, but

Table 2
ANOVA results for Distance (70/100/200/300 px) X Reward type (Green/Blue), both factors within-subjects, mean rapidity values for each seed, N = 10. Italics indicate statistical
significance, *p < .01, **p < .001, ***p < .0001. Data refer to robots with a metabolism (Study 2), tested with free energy levels.

Distance Reward type Interaction

Ec5: g0.1, b0.1 ∗∗∗F(3,27) = 308.61, p < .0001 F(1,9) = 1.17, p = 0.309 F(3,27) = 0.28, p = 0.835
Ec6: g0.1, b0.2 ∗∗∗F(3,27) = 374.28, p < .0001 ∗ , F(1,9) = 21.56, p = 0.0012 ∗∗∗F(3,27) = 28.17, p < .0001
Ec7: g0.3, b0.6 ∗∗∗F(3,27) = 19.83, p < .0001 ∗ , F(1,9) = 13.36, p = 0.0053 ∗∗∗F(3,27) = 14.41, p < .0001
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Fig. 13. Single choice task: effects of energy levels on the devaluation process in terms of rapidity of approach (panels A–C) and on percentage of valid trials (panel D) in
Ecology 7 (G = 0.3, B = 0.6), robots with metabolism.

in fact it is just a further manifestation of the emergence of energy-
specific strategies in Ecology 7. While in all other ecologies robots
maintain in this task the same choice behavior regardless of the
energetic level to which they are set during testing, we notice a
clear effect of the energy level on choice performance in Ecology 7,
as shown in Fig. 15.

In Ecology 7, satiated robots clearly tend to avoid choosing either
option (about 40% of null trials), and if they do take one food, they

are indifferent between them – rightly so, since a satiated robot
does not gain any energy from either option. In contrast, robots
with a lower energetic level pick one of the reward almost always
(less than 1.3% of null trials), and exhibit a clear preference for the
larger one, until it is moved away by a considerable distance – either
200 or 260 px, depending on the energetic level. Interestingly, the
preference for the larger reward is less marked but more stable for
robots with very low energy (0.1), which again is understandable:

Fig. 14. Choice patterns in a binary choice when the distance from the blue token progressively increases and the green token is always at 100 pixels from the individual:
mean number of tokens chosen by each individual out of 10 trials. Data refer to the robots with metabolism (Study 2), tested with free energy levels.
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Fig. 15. Effects of energy levels (1.0, 0.5, or 0.1) on choice patterns in a binary choice in Ecology 7 (G = 0.3, B = 0.6), robots with metabolism. Data refer to mean number of
token chosen by each individual out of 10 trials.

an individual facing the prospect of starvation cannot afford to be
too choosy.

3.4. Discussion and comparison with natural organisms

The main finding in this second study concerns the emergence of
clear differences between adaptive responses evolved in different
ecologies, as soon as metabolism becomes a relevant variable. In
particular, we notice that living in an environment with very large
food rewards (Ecology 7) produces energy-dependent behavioral
strategies, whereas individuals adapted to smaller food rewards
(Ecologies 5 and 6) tend to apply a uniform choice strategy, regard-
less of their current energy level: go for the larger and closer option
as quickly as possible. The lack of differentiation observed in poorer
ecologies is understandable: after all, over-eating is rarely an issue
there, whereas being very quick in gathering food is a highly viable
trait.

What is remarkable, however, is the emergence of thrift in richer
ecologies: in Ecology 7, satiated robots clearly refrain from con-
suming food, take their time in moving toward it (plausibly, to
allow their energy level to drop up to the point when eating it
will no longer be wasteful), and even exhibit a preference for the
smaller option in these circumstances (that is, for the choice that
minimizes waste). This pattern is so striking because here there
are very weak ecological pressures toward it: over-eating is not
harmful for the individual (contrary to what happens in most nat-
ural organisms), and resources are re-introduced in the ecology
as soon as they are consumed – so scarcity is not really an issue.
In fact, the only scarce commodity that robots might be trying to
preserve with this strategy is information: if a robot manages to
refrain from consuming a food until there is need for its full ener-
getic value, meanwhile keeping that food in sight (since robots have
no memory, in these studies), then that robot will be able to eat the
food at just the right time – as if it was looking for some sort of
“optimal bout”. Indeed, individual analysis of behavior (trajecto-
ries) provides tentative confirmation of this hypothesis: satiated
robots in Ecology 7 tend to circle around food tokens, until it is
time to eat them. The fact that thrifty tendencies evolve even in the
absence of specific pressures against over-indulgence might sug-
gest a preadaptation pattern (Bock, 1959): a trait originally evolved
to optimize search efficiency might later become crucial to avoid
over-eating and squandering, once these behaviors start affecting
negatively one’s fitness.

Another relevant result concerns the comparison of strategies
evolved in different ecologies, especially in terms of effec-
tiveness. Obviously, each ecology produces different behavioral
patterns, each of them well adapted to the relevant environ-
mental constraints. Still, comparison across ecologies raises two
intriguing issues: (i) How resilient is the strategy evolved in that

particular ecology? That is, how effective would that behavior be,
if the ecological parameters were to change more or less suddenly
(e.g., due to famine, population increase, colonization)? (ii) How
much is evolutionary success an indication of the evolution of truly
smart strategies, and how much is instead due to relative “envi-
ronmental abundance”? Obviously, richer ecologies are easier to
navigate, but this might have negative effects too, by promoting
sloppier behavioral strategies.

Our data indeed suggest that robots evolved in richer ecologies
are less effective in their ability to consume food (token intake rate,
Fig. 9, right panel), in spite of their longer lives and superior energy
consumption. This in turn does not depend on any general “dumb-
ness”, but rather derives from their energy-dependent behavior:
their thrifty strategies avoid consuming food on a full stomach,
and their energy-dense environment allows them to remain con-
stantly satiated without consuming a particular high number of
food tokens. This is perfectly fine in their native environment, but
it is likely to limit the resilience of their behavioral strategy. What
would happen to these robots, if their ecology abruptly became less
rich in highly energetic food? Their refusal to look for food while
satiated would no longer be viable: even though they would start
effectively looking for food as soon as their energy level dropped,
this might still be too late–especially if they were facing the com-
petition of another “tribe” used to more demanding environments,
like the robots from Ecology 5 or 6. This suggests that robots from
such “tougher neighborhoods” might outperform their more priv-
ileged cousins, if they were to colonize their environment. The fact
that experimental evolutionary robotics allows to test similar pre-
dictions (e.g., testing robots in ecologies different from those where
they evolved) is a further advantage of this methodology.

Finally, in terms of temporal preferences, we observed the same
form of delay aversion already noted in Study 1, again measured
as distance aversion. However, the presence of a metabolism pro-
duced a novel result also in this respect: whereas in Study 1 no
difference in discounting was observed, whenever the reward ratio
was kept constant (and excluding food density manipulation, as in
Ecology 4), here we see clear differences between Ecologies 6 and 7,
although they share the same reward ratio (0.2/01 = 0.6/03 = 2) and
ecological food density (10 tokens). In particular, robots move much
more slowly towards rewards, and become indifferent between
them much sooner in Ecology 7 rather than in Ecology 6: both
results suggest that food tokens loose their value more rapidly in
the richer ecology, as a function of distance. This is not surpris-
ing: where abundance of food is the rule, distance becomes a lesser
concern, especially if fitness is assessed in terms of life length. Even
without running toward food, a robot is likely to eat enough to live
long, thus maximizing its chances of reproductive success. Again,
this should not necessarily be taken as a violation of the magnitude
effect frequently reported for humans, where larger rewards tend



F. Paglieri et al. / Behavioural Processes 115 (2015) 1–18 15

to be discounted less steeply than smaller ones (Kirby, 1997; Green
et al., 1997, 1999). Whereas that result refers to different magni-
tudes of reward within the same ecology, here we are comparing
magnitudes across ecologies, and we are not aware of any empirical
data on magnitude effects of the latter type.

4. General discussion and conclusions

With respect to intertemporal choices, we succeeded in repli-
cating two basic behavioral patterns observed in all species tested
so far: a decay of reward value as a function of distance (to wit,
delay), and the emergence of a preference for the smaller and closer
option, if the larger one is placed too far away from the robot. Both
behaviors are indicative of delay aversion. Current data do not yet
allow to establish what reward devaluation function (e.g., exponen-
tial, hyperbolic, quasi-hyperbolic, sub-additive) or choice strategy
(e.g., the similarity based procedure proposed by Rubinstein, 2003)
would better account for reward devaluation in these robots, but
it would be relatively easy to gather further evidence to settle this
point: for instance, by determining further indifference points in
the asymmetric choice task, or by measuring rapidity of approach at
different distances in the single option task. Moreover, it would be
interesting to check whether time-dependent preference reversal
(Strotz, 1956; Ainslie, 2001) is observed in these robots, and under
what ecological conditions. This would require taking a choice
problem where the robot has a preference for the smaller option
(e.g., in Ecology 7, “blue at 200 px vs. green at 100 px”), and then
progressively increase the distance from both options (e.g., in Ecol-
ogy 7, “blue at 250 px vs. green at 150 px”, “blue at 300 px vs. green
at 200 px”, etc.), making sure that both options remain within the
perceptual field of the robot: if at some point the robot switches
its choice to the larger reward, this would reveal a time-dependent
preference reversal, and thus would suggest that an exponential
model cannot account for reward devaluation in that population.
The fact that even extremely simple robots show clear signs of delay
aversion, and thus can be further tested in more sophisticated tasks,
indicates the universality of delay aversion, and the fecundity of this
method.

Among the potential advantages of using experimental evo-
lutionary robotics for the analysis of intertemporal choice (see
Section 1), this study mainly highlighted two of them: full observ-
ability of behaviors, both in the ecology and in the lab, and
full control on all relevant parameters. We also made use of
non-deterministic responses, although without putting too much
emphasis on this point: in all laboratory tests, individual responses
were averaged over 10 trials for each condition, and the results
clearly show that robots vary in how they respond to the same
set of stimuli – as natural organisms also do. Two other advan-
tages of experimental evolutionary robotics, however, have not
been exploited in this study: neurocomputational transparency, i.e.,
looking at what activation patterns in the neural control system are
responsible for the observed behaviors, and individual differences,
i.e., analyzing how different individuals cope with the same eco-
logical or experimental problem. Length constraints prevented us
from dealing with these results in this paper: but a very convenient
feature of this methodology is that all data are stored in the system,
and could be accessed and analyzed at any time – by us, as well as
by other researchers.7

As expected (and intended), our work also showcased all the var-
ious limitations of this methodology: most notably, the high level of
abstraction from naturalistic data, the ensuing arbitrariness of sev-
eral design decisions, and the need to start small in exploring new

7 Indeed, requests for our data set are welcome and should be addressed to the
corresponding author.

issues. Regarding abstraction, there is no doubt that our robots are
much simpler than any living organism tested so far in intertem-
poral choice tasks, from every point of view: sophistication of the
control system (their neural network is closer to the nervous sys-
tem of very simple invertebrates, than to the brain of any mammal,
not to mention primates), complexity of the environment (a bidi-
mensional square with only two salient objects and no competition
from conspecifics or predators), reproductive system (without any
kind of sexual reproduction), learning capabilities (null, as opposed
to those of most animals), action repertoire (moving around on two
wheels, as opposed to the complex locomotion of most organisms),
etc. However, as noted above, the very fact that such naive organ-
isms evolve clear patterns of delay aversion, even in the absence of
a metabolism (Study 1), indicates how universal this phenomenon
is, and points to the key role of opportunity costs in determining
its evolution.

As for arbitrariness, some design choices were based on a mix-
ture of practical considerations and naturalistic evidence (e.g., using
distance as a proxy of delay), some were guided by specific research
questions (e.g., manipulating both ratio and difference of rewards
across different ecologies), some were grounded on past experience
with this technology (e.g., the number of internal units in the neu-
ral network, the size of the environment in relation to the limited
perceptual field of the robot, the number of generations used for
evolution), and some others were frankly random (e.g., the num-
ber of tokens to be placed in the ecology, the maximum life length
for each generation, the metabolic rate in Study 2). Did these fac-
tors affect our results? Almost certainly so. Could this be avoided?
Partially, yes, but not completely. Using naturalistic data to fix as
many parameters as possible would greatly help, and this prelim-
inary work was intended to lay the groundwork for such further
attempts. Alternatively, testing how variation in a given parame-
ter (e.g., food density) affects behavior would also justify greater
confidence in those results that remain constant across such vari-
ation. Both methods are worthy of being pursued in future work.
However, arbitrariness cannot be completely removed from exper-
imental evolutionary robotics, nor it needs to: as argued at the
onset, this method provides optimal results in combination with
naturalistic approaches, rather than in competition with them. And
arbitrariness, all things considered, is just the (unavoidable) down-
side of having full control on all the relevant parameters, which is
one of the key advantages of experimental evolutionary robotics.

This dovetails nicely on the need for starting small in similar
studies: in the Introduction, we listed this as a limitation of our
method, because it has severe drawbacks – first and foremost, it is
time-consuming. However, this study demonstrates also the bene-
fits of a step-by-step approach: if we had begun by studying robots
with a metabolism, it would have been very natural to interpret
their delay aversion in terms of energetic concerns – robots devalue
distant rewards because reaching them costs more energy. But this
would have been misleading, since we now know (thanks to Study
1, with its “unrealistic” non-metabolic robots) that, even in the
absence of any energetic constraints, robots develop strong delay
aversion – and they do so in ways similar to the patterns exhibited
by metabolic robots (except for the interaction with energy-based
behavioral strategies). This is an important result, all the more so
because it is hardly replicable in naturalistic studies: all known ani-
mals do have a metabolism. And yes, of course animals devalue
rewards also due to the direct costs of reaching them; but these
have to be added to the opportunity costs, and the latter, according
to our findings, might be the dominant force behind delay aversion
– albeit more evidence is needed to fully substantiate this claim.

In the end, the most exciting thing in presenting a new
methodological approach is, obviously, what comes next: that is,
what other manipulations such approach allows, once the basic
groundwork has been laid out. Even confining our attention to
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intertemporal choice (but similar considerations apply to any other
behavior), several opportunities for future studies come to mind.
For instance, Study 2 showed how having a metabolism affects the
evolution of delay aversion, but we kept the metabolic rate con-
stant across all ecologies (0.021 energy units consumed per time
step). However, it has been suggested (Tobin and Logue, 1994)
that metabolic rate might have a direct effect on delay discounting,
leading species that consume energy more rapidly to adopt higher
discount rates, that is, less willingness to wait for food rewards. Our
method permits to gather evidence on that hypothesis: in a first
phase, keeping constant all other ecological parameters, it would
be easy to verify whether robots with higher metabolic rates in
fact evolve stronger delay aversion; in a second phase, this effect
could be studied in interaction with other ecological factors, e.g.,
food density. Indeed, so far we discussed “ecological abundance”
as if it depended only on the number, density and value of food
rewards, but clearly it is also relative to the metabolic rate of the
species inhabiting that environment: “slow-burning” robots might
find more than enough energy even in relatively poor ecologies,
whereas “fast-burning” robots would be hard pressed for food even
in relatively rich contexts.

Another relevant topic easily available for study is the magni-
tude effect (Kirby, 1997; Green et al., 1997), that is, the tendency
to devalue larger rewards less steeply than smaller ones, as a func-
tion of time (in our setting, distance). As already noted, the failure
of observing this effect in the current study is neither surprising
nor worrisome, since here we manipulated reward magnitudes
between ecologies, rather than within them. Besides, in all ecolo-
gies where rewards sharply differed in value, we did observe a
faster devaluation process, in terms of rapidity of approach, for
the smaller one (Ecologies 1, 2, 4 and 6), except when energy-
dependent behavioral strategies interfered with it (Ecology 7).
However, proper study of the magnitude effect in robots would
require evolving them in an ecology where more than two food
magnitudes are present, e.g., an environment with green food (0.1),
blue food (0.2), and red food (0.4): then the prediction would be that
(i) in the single option task, rapidity of approach would decrease
more steeply for green than for blue than for red food; and (ii) in the
asymmetric choice task, robots would exhibit indifference between
a closer green food and a farther blue food (0.1 at 100 px vs. 0.2 at
N px) at a shorter distance than what is required to become indiffer-
ent between a closer blue food and a farther red food (0.2 at 100 px
vs. 0.4 at M px, with N > M).

Future work should also aim to increase, step by step, the
similarity between robots and natural organisms. Two key fac-
tors come to mind here: learning and sociality. Several techniques
are available for learning in neural networks, both supervised and
unsupervised (for a survey, see Hagan et al., 1996; Haykin, 1999),
and plugging them in these robots would be unproblematic. This
would allow two major advancements: on the one hand, the evo-
lutionary process would now be affected also by learning, so that
selection would favor not only individuals that are good at food
gathering, but also those that are better at learning useful strate-
gies during their lifetime (on the interaction between evolution and
learning in evolutionary robots, see Parisi et al., 1992; Parisi and
Nolfi, 1993, 1996; Nolfi et al., 1994; Nolfi and Parisi, 1996); on the
other hand, robots would learn also during laboratory tests, exactly
as animals do, and this would permit both training manipulations
(e.g., conditioning robots to respond to stimuli they never encoun-
tered in their ecology, like the operant keys or arbitrary tokens
used in intertemporal choices studies with animals; see for instance
Ainslie, 1974; Evans et al., 2012) and analysis of how choices change
across repeated trials and/or sessions. As for social interaction, in
this study it was completely absent, since each robot evolved in its
own private world and reproduced asexually. But of course it would
be highly interesting to see what happens when robots live socially

and are sexually differentiated (for some insight on how gender-
specific behaviors evolve under such conditions, see Da Rold et al.,
2011). The ecology would then become much more similar to the
natural environment of most species, but also much more complex
to analyze: among other things, conspecifics would become both
competitors (for food) and a scarce resource (for reproduction),
not to mention the possibility of strategic interaction (e.g., avoid-
ing over-crowded area to minimize competition, or follow the best
feeders). Further complications, such as predators or other species
competing for food, would also be easy to introduce, provided one
proceeds one step at a time, to avoid loss of explanatory power.

Whatever manipulation one favors, experimental evolutionary
robotics always offers a wealth of data, and in this study we only
scratched the surface of such a bounty: not only we ignored the
activation patterns of the neural network and the fine-grained
behavioral strategies of individual robots, as noted, but also focused
exclusively on fully evolved robots – that is, individuals of the last
generation. But individuals from previous generations are not lost,
contrary to what happens with natural organisms: we still have
their ecological data, as well as their genotypes, i.e., the weights of
their neural network at any given generation, so we can “resurrect”
them at will. This allows studying their evolution more minutely,
not only in terms of fitness and ecological behavior, but also test-
ing in the lab individuals from previous generations – as if we could
test and compare both contemporary and ancestral individuals of a
certain species (something which is impossible to do with natural
organisms, for obvious reasons). In this way, we will be able to track
down the evolution of specific behavioral patterns (preference for
the better reward, delay aversion, etc.), and whether they were an
early adaptation, present since the very first generations, or a rela-
tively late “discovery”. Moreover, the evolutionary history itself can
be manipulated, by changing the ecological parameters during evo-
lution: e.g., to simulate some sudden environmental change. This
would show how evolution is affected by “ecological shocks”, both
in terms of survival rate and fitness, and for the emergence and
extinction of individual behaviors and traits.

Finally, more effort should be put in developing unified theories
of multiple behaviors: with respect to evolutionary robotics, this is
well reflected in the motto “one robot, many phenomena” (Parisi,
2014). Given the inherent complexity of robotics research, the cur-
rent tendency is to focus only on one phenomenon at a time: after
building a convincing robotic model of it, then a different model is
proposed to account for another behavior or trait. Thus, the robots
evolved to study intertemporal choice are typically not the same
evolved to deal with uncertain decisions, seasonal foraging, coop-
eration, courtship, cultural transmission, etc. Indeed, theoretical
fragmentation is widespread also outside of evolutionary robotics:
in cognitive science, for instance, we currently have an abundance
of detailed models of specific phenomena, while overarching the-
ories of cognition are comparatively scarce and not always well
integrated with those models. This situation is at best a stepping
stone toward a more comprehensive understanding of behavior,
at worst a methodological dead end. Obviously, natural organ-
isms deal with behavioral complexity in a unified fashion: even
assuming some form of cognitive modularity, the control system
responsible for all behaviors is still one and the same. Evolution-
ary robotics could do much to approximate a similar situation with
artificial organism, but this requires a methodological revolution:
instead of building ad hoc systems to deal with only a limited set of
behavioral problems (as we did in this study), the same evolution-
ary robots should have to face a variety of behavioral challenges.
Granted, this will further complicate the analysis of the interaction
between evolution, learning and behavior, but it will also make it
much more informative.

In sum, this study, albeit preliminary, demonstrates the viability
and fecundity of experimental evolutionary robotics for the study
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of decision making in general, and intertemporal choice in partic-
ular. The fact that several improvements are possible and many
opportunities for future research are apparent only adds, rather
than detracts, to the interest for this methodology. Still, it is worth
insisting on a key epistemological concern: the very power and
flexibility of this method also paves the way to its most critical
downfall – that is, loosing touch with the natural phenomena that
it is supposed to illuminate. Given the high level of freedom and
control on a multitude of relevant parameters, it is easy to fall prey
of questionable scientific practices, such as making too many arbi-
trary design decisions and thus ending up with an overwhelming
amount of (potentially irrelevant) data. It is precisely to avoid a sim-
ilar degeneration that experimental evolutionary robotics should
strive to take its place among the natural and social sciences, rather
than being secluded in relatively isolated and highly specialistic
sectors, like artificial life and cognitive robotics. This will require a
mutual effort of interdisciplinary adjustment: evolutionary roboti-
cists will have to adapt their methods and present their findings
in ways consistent with standard scientific practices outside their
own field; and natural and social scientists will have to keep an
open mind toward a radically different method of studying exactly
the same phenomena they are interested to, with a keen eye for
any potential synergy with their own approaches.

Acknowledgments

A preliminary version of this paper was presented at the 1st
Conference of the Herbert Simon Society, “Bounded Rationality
Updated” (New York, 8–10 April 2013), at the 10th national confer-
ence of the Italian Association of Cognitive Sciences (Naples, 19–23
November 2013), and at the APA symposium “Worth Waiting
For—The Evolutionary and Developmental Foundations of Self-
Control” (Washington, 9 August 2014): we are indebted to the
organizers and participants of these events for providing valuable
feedback on our work. We are also grateful to the editors and one
anonymous reviewer of Behavioural Processes, who offered con-
structive and cogent criticism on a previous version of the article.

References

Addessi, E., Bellagamba, F., Delfino, A., De Petrillo, F., Focaroli, V., Macchitella, L.,
Maggiorelli, V., Pace, B., Pecora, G., Rossi, S., Sbaffi, A., Tasselli, M.I., Paglieri, F.,
2014. Waiting by mistake: symbolic representation of rewards modulates
intertemporal choice in capuchin monkeys preschool children and adult
humans. Cognition 130, 428–441.

Addessi, E., Paglieri, F., Focaroli, V., 2011. The ecological rationality of delay
tolerance: insights from capuchin monkeys. Cognition 119, 142–147.

Ainslie, G., 1974. Impulse control in pigeons. J. Exp. Anal Behav. 21 (3), 485–489.
Ainslie, G., 1975. Specious reward: a behavioral theory of impulsiveness and

impulse control. Psychol. Bull. 82 (4), 463–496.
Ainslie, G., 2001. Breakdown of Will. Cambridge University Press, New York.
Amici, F., Aureli, F., Call, J., 2008. Fission-fusion dynamics, behavioral flexibility:

and inhibitory control in primates. Curr. Biol. 18, 1415–1419.
Arbilly, M., Motro, U., Feldman, M.W., Lotem, A., 2011. Evolution of social learning

when high expected payoffs are associated with high risk of failure. J. R. Soc.
Interface 8, 1604–1615.

Axelrod, R., 1997. The Complexity of Cooperation: Agent-based Models of
Competition and Collaboration. Princeton University Press, Princeton.

Berns, Laibson, D., Loewenstein, G., 2007. Intertemporal choice – toward an
integrative framework. Trends Cognit. Sci. 11, 482–488.

Bock, W.J., 1959. Preadaptation and multiple evolutionary pathways. Evolution 13
(2), 194–211.

Bongard, J., 2013. Evolutionary robotics. Commun. ACM 56 (8), 74–83.
Brooks, R., 1999. Cambrian Intelligence: The Early History of the New AI.

Cambridge MIT Press.
Caligiore, D., Borghi, A.M., Parisi, D., Baldassarre, G., 2010. TRoPICALS: a

computational embodied neuroscience model of compatibility effects. Psychol.
Rev. 117, 1188–1228.

Chelonis, J.J., King, G., Logue, A.W., Tobin, H., 1994. The effect of variable delays on
self control. J. Exp. Anal. Behav. 62, 33–43.

Cheng, K., Peña, J., Porter, M., Irwin, J., 2002. Self-control in honeybees.
Psychonomic Bull. Rev. 9, 259–263.

Clark, A., 1997. Being There: Putting Brain, Body and World Together again. MIT
Press, Cambridge.

Da Rold, F., Petrosino, G., Parisi, D., 2011. Male and female robots. Adapt. Behav. 19
(5), 317–334.

Doncieux, S., Bredeche, N., Mouret, J.-B., 2011. New Horizons in Evolutionary
Robotics. Berlin/Heidelberg, Springer-Verlag.

Duckworth, A., Seligman, M., 2005. Self-discipline outdoes IQ in predicting
academic performance of adolescents. Psychol. Sci. 16 (12),
939–944.

Eiben, A.E., Smith, J.E., 2007. Introduction to evolutionary computing.
Springer-Verlag, Berlin.

Evans, T., Beran, M., Paglieri, F., Addessi, E., 2012. Delaying gratification for food
and tokens in capuchin monkeys (Cebus apella) and chimpanzees (Pan
troglodytes): when quantity is salient symbolic stimuli do not improve
performance. Anim. Cognit. 15, 539–548.

Fawcett, T., Fallenstein, B., Higginson, A., Houston, A., Mallpress, D., Trimmer, P.,
McNamara, J., 2014. The evolution of decision rules in complex environments.
Trends Cognit. Sci. 18 (3), 153–161.

Fawcett, T., McNamara, J., Houston, A., 2012. When is it adaptive to be patient?: A
general framework for evaluating delayed rewards. Behav. Processes 89,
128–136.

Floreano, D., Keller, L., 2010. Evolution of adaptive behavior in robots by means of
Darwinian selection. PLoS Biol. 8 (1), e1000292,
http://dx.doi.org/10.1371/journal.pbio.1000292.

Floreano, D., Husbands, P., Nolfi, S., 2008. Evolutionary robotics. In: Siciliano, B.,
Khatib, O. (Eds.), Springer Handbook of Robotics. Springer, Berlin, pp.
1423–1451.

Frederick, S., Loewenstein, G., O’Donoghue, T., 2002. Time discounting and time
preference: a critical review. J. Econ. Lit. 40, 351–401.

Garon, N.M., Longard, J., Bryson, S.E., Moore, C., 2012. Making decisions about now
and later: development of future-oriented self-control. Cognit. Dev. 27 (3),
314–322.

Gigerenzer, G., Goldstein, D., 1996. Reasoning the fast and frugal way: models of
bounded rationality. Psychol. Rev. 103 (4), 650–669.

Green, L., Estle, S.J., 2003. Preference reversals with food and water reinforcers in
rats. J. Exp. Anal. Behav. 79, 233–242.

Green, L., Fry, A.F., Myerson, J., 1994. Discounting of delayed rewards: a life-span
comparison. Psychol. Sci. 5, 33–36.

Green, L., Myerson, J., McFadden, E., 1997. Rate of temporal discounting decreases
with amount of reward. Memory Cognit. 25, 715–723.

Green, L., Myerson, J., Ostaszewski, P., 1999. Amount of reward has opposite effects
on the discounting of delayed and probabilistic outcomes. J. Exp. Psychol.
Learn. Memory Cognit. 25, 418–427.

Hagan, M., Demuth, H., Beale, M., 1996. Neural Network Design. PWS Publishing,
Boston.

Hammerstein, P., Stevens, J. (Eds.), 2012. Strüngmann Forum Reports. Cambridge,
MIT Press.

Haslam, M., Hernandez-Aguilar, A., Ling, V., Carvalho, S. de la Torre, I., DeStefano,
A., Du, A., Hardy, B., Harris, J., Marchant, L., Matsuzawa, T., McGrew, W.,
Mercader, J., Mora, R., Petraglia, M., Roche, H., Visalberghi, E., Warren, R., 2009.
Primate archaeology. Nature 460, 339–344.

Haykin, S., 1999. Neural networks: A comprehensive foundation, 2nd Ed.
Prentice-Hall, Upper Saddle River.

Kirby, K., 1997. Bidding on the future: Evidence against normative discounting of
delayed rewards. J. Exp. Psychol. Gen. 126, 54–70.

Laibson, D., 1997. Golden eggs and hyperbolic discounting. Quarterly J. Econ. 112,
443–477.

Lawyer, S.R., Williams, S.A., Prihodova, T., Rollins, J.D., Lester, A.C., 2010. Probability
and delay discounting of hypothetical sexual outcomes. Behav. Processes 84,
687–692.

Loewenstein, G., 1999. Experimental economics from the vantage-point of
behavioural economics. Econ. J. 109, F25–F34.

Logue, A., 1988. Research on self-control: an integrating framework. Behav. Brain
Sci. 11, 665–709.

Logue, A.W., Peña-Correal, T.E., 1985. The effect of food deprivation on self control.
Behav. Processes 10, 355–368.

Logue, A.W., Forzano, L.B., Ackerman, K.T., 1996. Self-control in children: age
preference for reinforcer amount and delay: and language ability. Learn.
Motivation 27, 260–277.

Long, J., 2012. Darwin’s devices: what evolving robots can teach us about the
history of life and the future of technology. Basic Books, New York.

Macy, M.W., Willer, R., 2002. From factors to actors: computational sociology and
agent-based modeling. Ann. Rev. Soc. 28, 143–166.

Mazur, J.E., 2007. Species differences between rats and pigeons in choices with
probabilistic and delayed reinforcers. Behav. Processes 75, 220–224.

Mischel, W., 1974. Processes in delay of gratification. In: Berkowitz, L. (Ed.),
Advances in Experimental Social Psychology, Vol. 7. Academic Press, New York,
pp. 249–292.

Mischel, W., Shoda, Y., Rodriguez, M.L., 1989. Delay of gratification in children.
Science 244, 933–938.

Moffitt, T., Arseneault, L., Belsky, D., Dickson, N., Hancox, R., Harrington, H., Houts,
R., Poulton, R., Roberts, B., Ross, S., Sears, M., Thomson, M., Caspi, A., 2011. A
gradient of childhood self-control predicts health, wealth, and public safety.
Proc. Natl. Acad. Sci. 108, 2693–2698.

Mondada, F., Bonani, M., Raemy, X., Pugh, J., Cianci, C., Klaptocz, A., Magnenat, S.,
Zufferey, J.C., Floreano, D., Martinoli, A., 2009. The epuck, a robot designed for
education in engineering. Proc. 9th Conf. Autonom. Robot Syst. Comp. Vol. 1,
59–65, Castelo Branco: IPCB.

dx.doi.org/10.1371/journal.pbio.1000292


18 F. Paglieri et al. / Behavioural Processes 115 (2015) 1–18

Mühlhoff, N., Stevens, J.R., Reader, S.M., 2011. Spatial discounting of food and social
rewards in guppies (Poecilia reticulata). Front. Psychol. 2, 68.

Niv, Y., Joel, D., Meilijson, I., Ruppin, E., 2002. Evolution of reinforcement learning
in uncertain environments: a simple explanation for complex foraging
behaviors. Adapt. Behav. 10, 5–24.

Nolfi, S., Floreano, D., 2000. Evolutionary Robotics: The Biology, Intelligence, and
Technology of Self-organizing Machines. MIT Press, Cambridge.

Nolfi, S., Parisi, D., 1996. Learning to adapt to changing environments in evolving
neural networks. Adapt. Behav. 5, 75–98.

Nolfi, S., Elman, J.L., Parisi, D., 1994. Learning and evolution in neural networks.
Adapt. Behav. 3, 5–28.

Noser, R., Byrne, R., 2007. Travel routes and planning of visits to out-of- sight
resources in wild chacma baboons Papio ursinus. Anim. Behav. 73, 257–266.

Paglieri, F., 2013. The costs of delay: waiting versus postponing in intertemporal
choice. J. Exp. Anal. Behav. 99 (3), 362–377.

Paglieri, F., Addessi, E., De Petrillo, F., Laviola, G., Mirolli, M., Parisi, D., Petrosino, G.,
Ventricelli, M., Zoratto, F., Adriani, W., 2014. Nonhuman gamblers: lessons
from rodents, primates, and robots. Front. Behav. Neurosci. 8, 33,
http://dx.doi.org/10.3389/fnbeh.2014.00033.

Paglieri, F., Addessi, E., Sbaffi, A., Tasselli, M.I., Delfino, A., 2015. Is it patience or
motivation? On motivational confounds in intertemporal choice tasks. J. Exp.
Anal. Behav. 103 (1), 196–217.

Paglieri, F., Borghi, A., Colzato, L., Hommel, B., Scorolli, C., 2013a. Heaven can wait:
how religion modulates temporal discounting. Psychol. Res. 77, 738–747.

Paglieri, F., Focaroli, V., Bramlett, J., Tierno, V., McIntyre, J., Addessi, E., Evans, T.,
Beran, M., 2013b. The hybrid delay task: Can capuchin monkeys (Cebus apella)
sustain a delay after an initial choice to do so? Behav. Processes 94, 45–54.

Parisi, D., 2014. Future Robots: Towards a Robotic Science of Human Beings.
Benjamins, Amsterdam.

Parisi, D., Nolfi, S., 1996. The influence of learning on evolution. In: Belew, R.K.,
Mitchell, M. (Eds.), Adaptive Individuals in Evolving Populations. Reading:
Addison-Wesley, pp. 419–428.

Pfeifer, R., Bongard, J., 2006. How the Body Shapes the Way We Think: A New View
of Intelligence. MIT Press, Cambridge.

Rosati, A., Stevens, J., Hare, B., Hauser, M., 2007. The evolutionary origins of human
patience: Temporal preferences in chimpanzees, bonobos and human adults.
Curr. Biol. 17, 1663–1668.

Rubinstein, A., 2003. Economics and psychology? The case of hyperbolic
discounting. Int. Econ. Rev. 44 (4), 1207–1216.

Saglimbeni, F., Parisi, D., 2011. Input from the external environment and input
from within the body. In: Kampis, I. (Ed.), Advances in Artificial Life. Darwin
meets von Neumann, Part I. Springer, Berlin, pp. 148–155.

Schwarz, J.C., Schrager, J.B., Lyons, A.E., 1983. Delay of gratification by preschoolers:
evidence for the validity of the choice paradigm. Child Dev. 54, 620–625.

Simon, H.A., 1956. Rational choice and the structure of the environment. Psychol.
Rev. 63, 129–138.

Squazzoni, F., 2012. Agent-based Computational Sociology. John Wiley & Sons,
Chichester.

Starmer, C., 1999. Experiments in economics: should we trust the dismal scientists
in white coats? J. Econ. Method. 6 (1), 1–30.

Stephens, D., Anderson, D., 2001. The adaptive value of preference for immediacy:
when shortsighted rules have farsighted consequences. Behav. Ecol. 12,
330–339.

Stevens, J., Stephens, D., 2010. The adaptive nature of impulsivity. In: Madden, G.,
Bickel, W. (Eds.), Impulsivity: The Behavioral and Neurological Science of
Discounting. APA, Washington, pp. 361–387.

Stevens, J., Hallinan, E., Hauser, M., 2005a. The ecology and evolution of patience in
two New World primates. Biol. Lett. 1, 223–226.

Stevens, J., Rosati, A., Ross, K., Hauser, M., 2005b. Will travel for food: Spatial
discounting in two New World monkeys. Curr. Biol. 15, 1855–1860.

Stevens, J.R., Mühlhoff, N., 2012. Intertemporal choice in lemurs. Behav. Processes
89, 121–127.

Strotz, R., 1956. Myopia and inconsistency in dynamic utility maximization. Rev.
Econ. Stud. 23, 165–180.

Tangney, J.P., Baumeister, R.F., Boone, A.L., 2004. High self-control predicts good
adjustment, less pathology, better grades: and interpersonal success. J.
Personality 72, 271–324.

Thompson, C., Barresi, J., Moore, C., 1997. The development of future-oriented
prudence and altruism in preschool children. Cognit. Dev. 12, 199–212.

Tobin, H., Logue, A., 1994. Self-control across species (Columba livia, Homo sapiens:
and Rattus norvegicus). J. Comp. Psychol. 108, 126–133.

Tobin, H., Chelonis, J.J., Logue, A.W., 1993. Choice in self control paradigms using
rats. Psychol. Rec. 43, 441–453.

Tobin, H., Logue, A.W., Chelonis, J.J., Ackerman, K.T., May, J.G., 1996. Self-control in
the monkey Macaca fascicularis. Anim. Learn. Behav. 24, 168–174.

Todd, P., Gigerenzer, G., 2012. the ABC Research Group. In: Ecological Rationality:
Intelligence in the World. Oxford University Press, New York.

van Haaren, F., van Hest, A., van de Poll, N.E., 1988. Self-control in male and female
rats. J. Exp. Anal. Behav. 49, 201–211.

Varela, F., Thompson, E., Rosch, E., 1992. The embodied mind: Cognitive science
and human experience. MIT Press, Cambridge.

Waibel, M., Floreano, D., Keller, L., 2011. A quantitative test of Hamilton’s rule for
the evolution of altruism. PLoS Biol. 9 (5), e1000615,
http://dx.doi.org/10.1371/journal.pbio.1000615.

dx.doi.org/10.3389/fnbeh.2014.00033
dx.doi.org/10.1371/journal.pbio.1000615

	Investigating intertemporal choice through experimental evolutionary robotics
	1 Introduction
	1.1 Why should we study choice behavior with evolutionary robots?

	2 Study 1: robots without a metabolism
	2.1 Basic experimental design
	2.2 Evolution: method and results
	2.3 Laboratory tests: method and results
	2.3.1 Single option
	2.3.2 Binary choice, distancing the better option

	2.4 Discussion and comparison with natural organisms

	3 Study 2: hungry robots
	3.1 Basic experimental design
	3.2 Evolution: method and results
	3.3 Laboratory tests: method and results
	3.3.1 Single option
	3.3.2 Binary choice, distancing the better option

	3.4 Discussion and comparison with natural organisms

	4 General discussion and conclusions
	Acknowledgments
	References


